# Document Technique d'Application Reffrence Avis Technique 16/14-694*01 Ext 

Mur en maçonnerie de briques creuses rectifiées de terre cuite

Ne peuvent se prévaloir du présent Document Technique d'Application que les productions certifiées, marque NF, dont la liste à jour est consultable sur Internet à l'adresse :
www.marque-nf.fr
rubrique :
Matériaux de construction et équipements pour le bâtiment

## Opti-solution

## Relevant des normes

## NF EN 771-1 et NF EN 998-2

Titulaire: Société Bouyer Leroux Structure. L'Etablère FR-49280 La Séguinière

Tél. : 0472527702
E-mail : contact@bio'bric.com
Internet : www.biobric.com.

Commission chargée de formuler des Avis Techniques (arrêté du 21 mars 2012)

Le Groupe Spécialisé $n^{\circ} 16$ de la Commission chargée de formuler les Avis Techniques a examiné le 22 octobre 2014, la demande de la Société BOUYER LEROUX STRUCTURE, titulaire du Document Technique d'Application $n^{\circ} 16 / 14-694$, sur le procédé de mur en maçonnerie en briques perforées «BLS bio'bric BGV et Urbanbric» de voir étendre ce Document au même produit distribué sous la marque «Opti-solution». Il a formulé, sur ce procédé, l'Avis ci-après.

## 1. AVIS

Compte tenu de l'engagement de la Société BOUYER LEROUX STRUCTURE à ne commercialiser sous la gamme * Opti-solutlon » que les éléments tels que défini dans le Document Technique d'Application * Gamme BLS bio'bric BGV et Urbanbric », avec les dénominations commerciales ci-dessous.

| Gamme BLS bio'bric BGV et <br> Urbanbric | Marque Opti-solution |
| :---: | :---: |
| BGV PV | Optibric PV |
| BGV 3+ | Optibric PV3+ |
| BGV 4G | Optibric PV4G |
| Urbanbric | Urbanbric |
| BGV S25 | Optibric PV S25 |

Le Groupe Spécialisé nº 16 formule, concernant la gamme * Optisolution » distribuée par la Soclété BOUYER LEROUX STRUCTURE, le même Document Technique d'Application que celui formulé sous le $n^{\circ} 16 / 14-694$, aux mêmes conditions et pour la même durée.

## Conclusions

Appréciation globale
L'utilisation du procédé dans le domaine d'emploi accepté est appréciée favorablement.

Validité
Identique à celle de l'Avis Technique $n^{\circ} 16 / 14-694$.

## Document Technique d'Application

 Référence Avis Technique $\underset{\text { Annule et remplace l'Avis Technique 16/14-694 }}{16 / 14-694 * V 1}$
## Mur en maçonnerie

Ne peuvent se prévaloir du présent Document Technique d'Application que les productions certifiées, marque NF, dont la liste à jour est consultable sur Internet à l'adresse :
www.marque-nf.fr
rubrique :
Matériaux de construction et équipement pour le bâtiment

## Gamme BLS bio'bric BGV et Urbanbric

Relevant des normes
NF EN 771-1
NF EN 998-2
Titulaire : Société Bouyer Leroux Structure
L'Etablère
FR-49280 La Séguinière
Tél. : 0241637616
Fax : 0272627088.
E-mail : contact@bio'bric.com

Commission chargée de formuler des Avis Techniques
Groupe Spécialisé $\mathbf{n}^{\circ} 16$
Produits et procédés spéciaux pour la maçonnerie
Vu pour enregistrement le 17 juin 2015


#### Abstract

Le Groupe Spécialisé $n^{0} 16$ de la Commission chargée de formuler les Avis Techniques a examiné le 12 février 2015, le procédé de mur de maçonnerie Gamme BLS bio'bric BGV et Urbanbric présenté par la Société BOUYER LEROUX STRUCTURE. Le présent document, auquel est annexé le Dossier Technique établi par le demandeur, transcrit l'Avis formulé par le Groupe Spécialisé qui rassemble les informations complémentaires utiles aux utilisateurs du procédé quant au domaine d'emploi, aux dispositions de conception et de mise en œuvre proposées propres à assurer un comportement normal des ouvrages. Cet Avis annule et remplace le Document Technique d'Application 16/14-694 .Cet Avis a été formulé pour les utilisations en France Européenne. Cet Avis ne vaut que pour les fabrications bénéficiant d'un Certificat de qualification NF.


## 1. Définition succincte

### 1.1 Description

Procédé de réalisation de murs en maçonnerie chaînée ou non armée à isolation rapportée (Isolation Thermique par l'Intérieur ou Isolation Thermique par l'Extérieur) en blocs de terre cuite montés à joints minces de mortier-colle.
Les joints verticaux à emboîtement permettent un assemblage à sec mais peuvent également être collés ou remplis de mortier, notamment pour l'utilisation du procédé en zone sismique.
Les dimensions des briques de la gamme visée sont comme suit :

| Brique | Epaisseur <br> $(\mathrm{mm})$ | Longueur <br> $(\mathrm{mm})$ | Hauteur <br> $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: |
| BGV PV (40 alvéoles) | 200 | 560 | 274 |
| BGV 3+ | 200 | 560 | 274 |
| BGV 4G | 200 | 560 | 274 |
| Urbanbric | 200 | 560 | 274 |
| BGV S25 | 250 | 500 | 274 |
| BGV RT1.2 | 200 | 560 | 274 |
| BGV PV15 | 150 | 500 | 274 |

### 1.2 Revêtements

### 1.21 Revêtements extérieurs

Dans le cas d'une isolation par l'intérieur, enduits traditionnels monocouches ou multicouches applicables sur supports de type Rt2 ou Rt3 au sens du DTU 26.1
Dans le cas d'une isolation par l'extérieur, doublage en maçonnerie ou tout système d'Isolation thermique par l'extérieur ayant fait l'objet d'un Avis Technique prévoyant l'utilisation sur support en maçonnerie de briques de terre cuite.

### 1.22 Revêtements intérieurs

Dans le cas d'une isolation par l'extérieur, tout type d'enduit compatible avec le support terre cuite (enduits à base de liants hydrauliques ou enduits plâtre ou plâtre allégé), plaques de plâtres collées, conformes aux normes en vigueur ou faisant l'objet d'une évaluation technique.
Dans le cas d'une isolation par l'intérieur, complexe de doublage plaque de plâtre-isolant ou isolant et contre-cloison brique ou tout système d'isolation rapportée traditionnel compatible avec la maçonnerie de terre cuite.

### 1.3 Mise sur le marché

En application du Règlement (UE) nº305/2011, le produit en terre cuite fait l'objet d'une déclaration des performances (DdP) établie par le fabricant sur la base de la norme NF-EN-771-1. Les produits conformes à cette DdP sont identifiés par le marquage CE.
De même, en application du Règlement (UE) $n^{\circ} 305 / 2011$, le mortier fait l'objet d'une déclaration des performances (DdP) établie par le fabricant sur la base de la norme NF-EN-998-2. Les produits conformes à cette DdP sont identifiés par le marquage CE.

### 1.4 Identification des produits

Les produits sont marqués sur au moins $25 \%$ de la production par une roulette réalisant une impression en creux en sortie de filière; le marquage comporte le repérage du fabricant et de l'usine de fabrication, la date de fabrication, le nom du produit, le logo de la marque NF, ainsi que la Catégorie de résistance à l'écrasement. Les produits en terre cuite mis sur le marché portent le marquage CE dont le certi-
ficat contient les informations prevues par l'annexe ZA de la norme NF EN 771-1. De même, les mortiers de montage mis sur marché portent le marquage CE accompagné des informations prévues par l'annexe ZA de la norme 998-2

## 2. AVIS

### 2.1 Domaine d'emploi accepté

Les ouvrages de maçonnerie visés dans le DTU 20.1.
Les limitations résultent de l'application des règles de conception et de calcul données dans le Cahier des Prescriptions Techniques.
Par ailleurs, les conditions d'exposition à respecter sont :

- pour les murs isolés par l'intérieur, celles visées dans la partie 3 du DTU 20.1 «Guide pour le choix des murs de façade en fonction du site », l'épaisseur brute de la maçonnerie devant être supérieure ou égale à 20 cm dans ce cas;
- pour les murs isolés par l'extérieur, celles définies par référence à l'Avis Technique du système d'isolation et au document «Conditions générales d'emploi des systèmes d'isolation thermique par l'extérieur faisant l'objet d'un Avis Technique» (Cahier du CSTB 1833 de mars 1983) en assimilant le mur à une maçonnerie traditionnelle de briques en terre cuite.
Le procédé peut être utilisé pour la réalisation d'ouvrages en maçonnerie chaînée (confinée au sens de la NF-EN-1996-1) nécessitant des prescriptions parasismiques au sens de l'arrêté du 22 octobre 2010 modifié (Zones 1 à 4 uniquement).
Les maçonneries non armées ne sont pas visées pour la réalisation d'ouvrages nécessitant des prescriptions parasismiques au sens de l'arrêté du 22 octobre 2010 modifié.
Le domaine d'emploi de la brique BGV PV15 est limité aux applications hors exigences incendie et acoustique.


### 2.2 Appréciation sur le procédé

### 2.21 Stabilité

La stabilité est normalement assurée dans le domaine d'emploi accepté, moyennant le respect des règles habituelles en matière de conception, calcul et mise en œuvre des maçonneries de blocs perforés traditionnels en terre cuite ainsi que des prescriptions du cahier des prescriptions particulières du présent document.

### 2.22 Constructions en zones sismiques

Le procédé peut être utilisé pour la réalisation d'ouvrages nécessitant des dispositions parasismiques au sens de l'arrêté du 22 octobre 2010 modifié, à condition de respecter les prescriptions détaillées dans le paragraphe 2.34 ci-après.

### 2.23 Sécurité incendie

Compte tenu de la nature incombustible des matériaux constitutifs des blocs et du mortier des joints, le procédé ne pose pas de problème particulier du point de vue de la réaction au feu.
Le procédé permet de satisfaire à la réglementation incendie pour le domaine d'emploi visé, dans la limite du domaine de validité des appréciations de laboratoire des differents produits et configurations de la gamme. La liste des PV de résistance au feu disponible ainsi que les configurations testées sont présentées en Annexe du Dossier Technique, dans un tableau indiquant pour chaque brique la configuration, la charge, la hauteur d'essai et le classement.
L'attention des concepteurs est attirée sur le fait que le respect des limitations du domaine de validité des appréciations et des PV de laboratoires peut être dimensionnant lors de la conception de l'ouvrage.
2.24 Prévention des accidents lors de la mise en œuvre
Les poids des différentes briques de la gamme sont comme suit:

| Brique | Poids (kg) |
| :---: | :---: |
| BGV PV (40 alvéoles) | 18.5 |
| BGV 3+ | 20.3 |
| BGV 4G | 22 |
| Urbanbric | 23 |
| BGV S25 | 23 |
| BGV RT1.2 | 21 |
| BGV PV15 | 16.9 |

Ces poids sont inférieurs à la charge maximale sous condition de manutention établie par la Norme NF X35-109 à 25 kg .
Les briques dont les alvéoles sont trop petites pour pouvoir introduire les doigts (BGV RT1.2, BGV 4G, BGV S25 et Urbanbric) sont dotées de trous de manutention.

### 2.25 Thermique

Les valeurs thermiques de la terre cuite et de la maçonnerie sont indiquées dans le tableau en Annexe de la partie Avis pour chaque produit. Ces valeurs s'appliquent à des productions visées par la certification NF Th et elles ne sont valables qu'en partie courante.
Le procédé peut permettre de satisfaire aux exigences réglementaires, étant entendu que les performances thermiques de l'enveloppe ne dépendent pas du seul procédé et qu'une vérification par le calcul, conformément aux règles Th-U doit être conduite dans chaque cas.
L'élément BGV PV 15 n'est pas certifié NF-Th.

### 2.26 Acoustique

Les performances acoustiques du procédé ont été déterminées par essais en laboratoire dont les résultats sont détaillés dans le DTED.
Celles-ci constituent des données nécessaires à l'examen de la conformité d'un bâtiment vis-à-vis de la réglementation acoustique en vigueur (arrêtés du 30 juin 1999 relatif aux bâtiments d'habitation, du 25 avril 2003 relatif aux hôtels, établissements d'enseignements, et établissements de santé). Trois approches sont utilisables pour cela : Le calcul (selon NF EN 12354-1 à 5 ; objet du logiciel ACOUBAT) ; le référentiel QUALTTEL ou les Exemples de Solutions Acoustiques (publié en janvier 2014 par la DHUP).
L'atteinte des performances acoustiques réglementaires entre deux logements avec ce système nécessite notamment la prise en compte des principes suivant:

- En Isolation Thermique par l'Intérieur :
- Utilisation de doublages thermo-acoustiques intérieurs
- Appui de plancher sur 2/3 minimum de l'épaisseur de la façade
- Pénétration du mur de refend en béton armé sur $2 / 3$ minimum de l'épaisseur de la façade
- En Isolation Thermique par l'Extérieur :
- Appui de plancher (type dalle pleine en béton armé) sur $2 / 3 \mathrm{mi}$ nimum de l'épaisseur de la façade
- Pénétration du mur de refend en béton armé sur $2 / 3$ minimum de l'épaisseur de la façade
Pour le choix de matériaux et l'épaisseur minimale des refends et planchers, l'utilisateur se référa aux exemples de Solutions Acoustiques publiées en janvier 2014 par la DHUP.


### 2.27 Caractéristiques environnementales et sanitaires

Des fiches de déclaration environnementales et sanitaires (FDES) ont été fournies par le titulaire pour les briques de la gamme.

### 2.28 Durabilité

La terre cuite constitutive des éléments ne pose pas de problème de durabilité intrinsèque. Compte tenu de ce que les matériaux associés à la terre cuite dans le mur fini sont également des matériaux minéraux, la durabilité d'ensemble des murs est estimée équivalente à celle des murs traditionnels homogènes constitués de ces mêmes types de matériaux.

### 2.29 Fabrication

La fabrication des briques et accessoires est classique pour ce type de produits.
La précision dimensionnelle en hauteur demandée par le mode de pose spécifique est obtenue par la mise en œuvre d'une chaîne de rectification de chaque face horizontale des produits à l'aide de disques diamantés.

La fabrication fait l'objet d'un autocontrôle suivi par le CTMNC dans le cadre de la procédure de certification de la marque NF.
Les produits bénéficiant d'une telle certification sont repérables par la présence du logo de la marque imprimé par des roulettes.
La fabrication des mortiers de montage à joints minces est également classique pour ce type de produit.

### 2.210 Mise en œuvre

Le procédé vise à réaliser des murs de maçonnerie en pose collée à joints minces. Les éléments sont ajustés entre eux, les joints verticaux peuvent être laissés secs ou remplis et les joints verticaux sont réalisés à l'aide d'un mortier spécial pour joints minces appliqué au rouleau.
Cette mise en œuvre ne pose pas de probleme particulier moyennant l'application des méthodes décrites dans le DTED. Cependant, un soin particulier devra être accordé à la réalisation des assises dont la planéité conditionne directement la qualité de réalisation des murs.
De plus, compte tenu de l'épaisseur réduite du joint de mortier-colle et de la relative porosité du support, la longueur maximale d'encollage ne doit pas être trop importante de manière à éviter des dessiccations prématurées du mortier-colle, qui seraient préjudiciables à la bonne tenue du collage.
Le titulaire du présent Avis est tenu d'apporter son assistance technique aux entreprises découvrant le procédé et désireuses de mettre en œuvre le procédé visé, notamment au démarrage des chantiers.

### 2.3 Cahier des Prescriptions Techniques

### 2.31 Prescriptions de conception

### 2.311 Résistance sous charges verticales

À l'état-limite ultime, la valeur de calcul de la charge verticale appliquée par mètre de longueur de mur NEd (Obtenu suivant les normes NF EN 1990 et 1991) doit être inférieure ou égale à la valeur de calcul de la résistance aux charges verticales, NRd, exprimée en MN/m et donnée par l'expression suivante:

$$
N_{R d}=\frac{\Phi \cdot t \cdot f_{k}}{\gamma_{M}}
$$

Avec:

- t : épaisseur de la maçonnerie, en mètres;
- $f_{k}$ : résistance caractéristique de la maçonnerie, exprimée en MPa.
- $\gamma_{M}$ : coefficient partiel de sécurité sur la résistance de la maçonnerie.
- $\Phi$ : coefficient de réduction pour tenir compte de l'élancement du mur, l'excentricité des charges verticales appliquées et l'effet de fluage.
Les valeurs de $\Phi$ peuvent être calculées de deux façons:

1. Méthode standard: Calcul suivant NF EN 1996-1-1, §6,1
2. Méthode simplifiée exposée ci-dessous

Si on respecte les prescriptions des règles NF EN 1996-3, §4.2 et les hypothèses ci-dessous:

- Elancement des murs <20
- Portée du plancher $\leq 6 \mathrm{~m}$
- Hauteur libre d'un étage $\leq 3 \mathrm{~m}$
on peut utiliser les valeurs de $\Phi$ ci-dessous (calculées suivant la méthode simplifiée NF EN 1996-3, $\S 4.2 .2 .3$ ):

| Epaisseur du mur | $\mathrm{t}(\mathrm{m})$ | 0,15 | 0,20 | 0.25 |
| :---: | :---: | :---: | :---: | :---: |
| Murs intermédiaires | $\Phi$ centré | 0,41 | 0,60 | 0.69 |
| Murs servant d'appui en rive <br> aux planchers | $\Phi$ excentré | 0,41 | 0,55 | 0.55 |
| Murs de niveau le plus élevé | $\Phi$ excentré | 0,40 | 0,40 | 0.40 |

Pour les murs de bâtiments soumis à exigences réglementaires en matière de résistance au feu, la charge verticale $N_{E d}$ pondérée par le coefficient de réduction $\eta_{\Gamma i}$ doit être inférieure ou égale à la valeur de la charge maximale indiquée dans le Procès-Verbal de classement. On prendra par défaut $\eta_{\pi}=0,7$. En outre, la hauteur maximale du mur est limitée à la valeur indiquée dans ce Proès Verbal.

### 2.312 Contreventement des maçonneries chaînées

Voir le cahier du CSTB N³719 «Note d'information : Contreventement par murs en maçonnerie de petits éléments».
La justification de l'aptitude du mur à assurer sa fonction de contreventement passe par les deux vérifications suivantes:

1- Le non écrasement de la zone comprimée de la maçonnerie en pied de mur. Cette vérification de non-écrasement s'écrit :

$$
\frac{2 \cdot \frac{V_{E d}}{N_{E d}} \cdot \frac{h}{l}+l}{l_{c} \cdot\left(l-\frac{l_{c}}{3}\right)} \cdot N_{E d \cdot} \cdot l \leq \frac{\Phi . t \cdot f_{k}}{\gamma_{M}}
$$

Avec :

- $V_{E d}$ : force horizontale appliquées au mur, exprimée en MN ;
- I et $h$ : respectivement longueur et hauteur du mur, exprimées en mètres ;
- $I_{c}$ : longueur comprimée du mur (cf. § 6.2 de l'EN 1996-1-1), exprimée en mètres, est donnée dans le tableau 1 du cahier du CSTB $n^{\circ} 3719$ rappelé ci-après en fonction de la longueur du mur et du rapport $V_{e d} /\left(1 . N_{e d}\right)$ :

|  |  | Longueur du mur (m) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.50 | 2.00 | 2.50 | 3.00 | 4.00 | 5.00 |  |
| $V_{\text {ed }}\left(I . N_{\text {ed }}\right)$ | 0 | 1.50 | 2.00 | 2.50 | 3.00 | 4.00 | 5.00 |  |
|  | 0.1 | 1.50 | 2.00 | 2.50 | 3.00 | 4.00 | 5.00 |  |
|  | 0.2 | 0.92 | 1.55 | 2.26 | 3.00 | 4.00 | 5.00 |  |
|  | 0.3 | 0.63 | 1.04 | 1.62 | 2.31 | 3.75 | 5.00 |  |
|  | 0.4 | 0.51 | 0.77 | 1.16 | 1.70 | 3.05 | 4.51 |  |

Pour des valeurs du rapport $V_{\text {ed }} /\left(1 . N_{e d}\right)$ comprises entre deux lignes du tableau ci-dessus ou pour des longueur du mur comprises entre deux colonnes du tableau ci-dessus, il est possible de procéder à une interpolation linéaire pour en déduire la valeur $I_{c}$ à utiliser.
2- l'absence de rupture prématuré par cisaillement à l'interface éléments de maçonnerie/joint horizontal, à vérifier en utilisant le modèle de cisaillement décrit au § 6.2 de l'EN 1996-1.1. La valeur de calcul de la force de cisaillement appliquée $V_{E d}$ doit être inférieure ou égale à la valeur de la résistance au cisaillement du mur, $V_{\text {rd }}$, exprimée en MN et donnée par l'expression suivante :

$$
F_{\mathrm{rd}}=\frac{t \cdot h_{\text {萉 }}}{\gamma_{m}}+\sum A_{\varepsilon} \cdot \frac{\hbar_{\mathrm{cvk}}}{\gamma_{\mathrm{c}}}
$$

Avec:

- $f_{V k}$ : résistance caractéristique en cisaillement de la maçonnerie, exprimée en MPa.
- I est la longueur de l'ouvrage de maçonnerie entre chainages,
- $\Sigma A_{\text {e }}$ est la somme des sections de béton des chaînages,
- $\mathrm{f}_{\mathrm{ck}}$ est la résistance caractéristique au cisaillement du béton,
- $y_{r}$ est le coefficient partiel de sécurité relatif au béton. Yc est égal à 1,5 en situation courante et à 1,2 en situation accidentelle de type sismique.
La résistance caractéristique au cisaillement de la maçonnerie, $f_{v k}$, est prise égale à l'une des deux expressions suivantes:
- pose à joints verticaux secs
$f_{\mathrm{Dk}}=0.5 f_{\mathrm{VAO}}+0,4, \frac{\mathrm{~F}_{E d}}{t} \leq 0.045 . f_{\mathrm{E}}$
- pose à joints verticaux remplis ou collés sur au moins $40 \%$ de

$$
f_{v k}=f_{v k e}+0 \mathrm{~A} \frac{N_{E d}}{t} \leq 0.065 . \mathrm{N}_{\mathrm{B}}
$$

Avec:

- $f_{v k 0}$ : Résistance initiale au cisaillement, en MPa (Voir tableau en Annexe de la partie Avis du présent document)
- $f_{b}$ : Résistance moyenne en compression normalisée des éléments, en MPa (Voir tableau en Annexe de la partie Avis du présent document).
Dans le cas de murs montés à joints verticaux secs, le décalage des briques/blocs d'une rangée sur l'autre doit être proche de la demilongueur de ces derniers. De plus, la longueur minimale du panneau de contreventement doit être égale à $h \cdot \frac{I_{b}}{2 \cdot h_{b}}, \mathrm{~h}$ étant la hauteur du mur, et $l_{b}$ et $h_{b}$ étant respectivement la longueur et la hauteur de l'élément de maçonnerie.
La section minimale des armatures de chaînage est $2 \mathrm{~cm}^{2}$.

Les données essentielles nécessaires aux vérifications sont récapitulées dans le tableau en Annexe.

### 2.313 Contreventement des maçonneries non armées

Voir le cahier du CSTB N ${ }^{\circ} 3719$ «Note d'information: Contreventement par murs en maçonnerie de petits éléments », §1.3.2.1.

Le non -écrasement de la zone comprimée en pied de mur s'écrit :
$\frac{2 . V_{E d} \cdot h+N_{E d} \cdot l}{l_{c} . t .\left(l-\frac{l_{c}}{3}\right)} \leq \frac{f_{k}}{\gamma_{M}}$
Avec:
$\mathrm{V}_{\mathrm{Ed}}=$ force horizontale appliquée en tête du mur
$\mathrm{N}_{\mathrm{Ed}}=$ force verticale appliquée à mi-longueur du mur
$\mathrm{I}, \mathrm{h}, \mathrm{t}=$ longueur, hauteur et épaisseur du mur, exprimées en m
$I_{c}=$ longueur comprimée du mur, exprimée en $m$ telle que :
$l_{c}=\frac{3}{2} l-3 \frac{h \cdot V_{E d}}{N_{E d}}$
Les données essentielles aux vérifications sont récapitulées dans le tableau en Annexe.

### 2.314 Prescriptions spécifiques au montage à joints minces

Du fait de la nécessité de disposer d'un nombre entier de rangées sur chaque hauteur d'ouvrage (mur, allège, ...), et du fait de l'impossibilité de jouer sur l'épaisseur des joints aux fins de rattrapage, un calepinage préalable en hauteur des ouvrages est indispensable.
Un calepinage des ouvrages en longueur et pour le positionnement des baies est en outre nécessaire pour limiter le nombre de coupes au minimum.

### 2.32 Prescriptions de fabrication

Les caractéristiques des blocs/briques doivent satisfaire aux spécifications de la norme NF EN 771-1 et à son complément national en ce qui concerne la catégorie $M$ (briques et blocs pour mise en œuvre à joints minces), soit: l'aspect, les dimensions, l'état de surface, les éclatements, la dilatation conventionnelle à I'humidité, l'absorption d'eau, et les tolérances dimensionnelles sur la hauteur.
De plus, la classe de résistance doit être conforme à celles indiquée au Dossier Technique établi par le demandeur.
Les briques doivent faire I'objet d'une certification NF en conformité avec la norme NF EN 771-1.

### 2.33 Prescriptions de mise en œuvre

Il est rappelé que l'application du mortier-colle, choisi exclusivement parmi ceux indiqués au Dossier Technique, doit être effectuée à l'aide du rouleau spécialement prévu à cet effet de manière à assurer un calibrage aussi régulier que possible de la couche de mortier. La pose est proscrite sur supports gelés ou gorgés d'eau.
La technique nécessitant de poser le premier rang sur une assise bien plane et de niveau, la planéité et l'horizontalité sont à vérifier sur la périphérie de l'ouvrage (ou sur une partie de l'ouvrage délimitée par des joints de fractionnement) au moyens d'instruments dont la précision de mesure est compatible avec celle de l'ouvrage à réaliser.
Les dispositions constructives des maçonneries chainées correspondent à celles de l'Eurocode 6 (maçonneries confinées).
Les dispositions constructives des maçonneries non armées correspondent à celles prévues par le DTU 20.1 pour les maçonneries chaînées (section béton, section armatures...).

### 2.34 Utilisation en zones sismiques

Les murs montés à l'aide du procédé peuvent être utilisés pour la réalisation d'éléments structuraux principaux de bâtiments soumis à exigences parasismiques au sens du décret 2010-1255 du 22 octobre 2010 portant délimitation des zones de sismicité du territoire françals, moyennant le respect des prescriptions de la norme NF EN 1998-1 et de son annexe nationale NF EN 1998-1/NA, et en particulier le respect des prescriptions relatives aux maçonneries chaînées (=confinées au sens de la NF EN 1996-1)..
Les vérifications au contreventement sont à mener selon le modèle donné au § 2.312 ci-avant, en considérant :

- Un coefficient de comportement $q$ de 2.5 (valeur maximale);
- Un coefficient partiel de sécurité sur la résistance de la maçonnerie égal à $2 / 3$. $2 m$, sans être inférieur à 1,5 ;
- Un coefficient partiel de sécurité sur la résistance de l’acier $\nless 5$ égal à 1

Seules les briques accessoires présentant une section de chaiinage pouvant englober un cercle de 15 cm peuvent être utilisées. La section minimale des armatures de chaînage est $3 \mathrm{~cm}^{2}$.

## Prescriptions applicables aux maisons individuelles:

Dans le cas de petits bâtiments de forme simple, définis dans la norme NF P 06-014, une justification sans nécessité de vériflcation par calcul est également possible en application de cette norme. Il est rappelé que les bâtiments visés par cette norme doivent être au maximum de type $R+1+$ comble, de forme simple tant en plan qu'en élévation, et contreventés par des murs répartis sur le pourtour des planchers.
Pour ces petits bâtiments, la longueur des panneaux dans chaque direction, exprimée en mètres, ne doit pas être inférieure au quotient de la surface $S$ totale construite au sol, en mètres carrés, par le coefficient $k$ donné dans le tableau ci-après
Pour une épaisseur de 20 cm :

| Zone <br> sismique | Joints <br> verticaux | Bâtıment <br> RDC + <br> toiture <br> légère | Bâtiment <br> RDC + <br> comble <br> avec <br> planchers <br> lourds | Bâtiment <br> R+1+ <br> comble <br> avec <br> planchers <br> lourds |
| :---: | :---: | :---: | :---: | :---: |
|  | Secs | 21 | 11 | 8 |
|  | Collés | 38 | 19 | 12 |
| 4 | Secs | 13 | 8 | 5 |
|  | Collés | 25 | 13 | 8 |

Pour une épaisseur de 25 cm :

| Zone <br> sismique | Joints <br> verticaux | Bâtiment <br> RDC + <br> toiture <br> légère | Bâtiment <br> RDC + <br> comble <br> avec <br> planchers <br> lourds | Bâtiment <br> R+1+ <br> comble <br> avec <br> planchers <br> lourds |
| :---: | :---: | :---: | :---: | :---: |
|  | Secs | 25 | 13 | 9 |
| 4 | Collés | 46 | 23 | 15 |
|  | Secs | 16 | 9 | 6 |
|  | Collés | 30 | 16 | 10 |

## Conclusions

## Appréciation globale

L'utillsation du procédé dans le domaine d'emploi visé est appréciée favorablement.

Validité 6 ans
Jusqu'au 31 octobre 2020

Pour le Groupe Spécialisé $n^{\circ} 16$, Le Président

## 3. Remarques complémentaires du Groupe Spécialisé

Le groupe attire l'attention sur les dispositions constructives nécessaires pour les maçonneries chainées et non armées hors exigences slsmiques. Les dispositions constructives des maçonneries chainées correspondent à celles de l'Eurocode 6. Les dispositions constructives des maçonneries non armées correspondent à celles prévues par le DTU 20.1 pour les maçonneries chaînées (section béton, section armatures...).
Il est également rappelé que les maçonneries non armées et non chalnées au sens de l'Eurocode 8 ne sont pas utilisables pour les bâtiments nécessitant des dispositions parasismiques.

Le Rapporteur du Groupe Spécialisé $n^{\circ} 16$

ANNEXE à la partie AVIS:

- Données nécessaires aux vérifications

|  |  | $\begin{aligned} & \text { BGV PV (40 } \\ & \text { alvéoles) } \end{aligned}$ | BGV 3+ | BGV 4G | Urbanbric | BGV S25 | BGV RT 1,2 | BGV PV15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| résistance moyenne en compression normalisée des éléments | $\mathrm{f}_{\mathrm{b}}$ (MPa) | 8,8 | 8,8 | 8,8 | 11.3 | 10,4 | 8,75 | 13.5 |
| Résistance caractéristique en compression de la maçonnerie | $\mathrm{f}_{\mathrm{k}}$ (MPa) | 2,8 | 3,1 | 3,9 | 5,8 | 4,1 | 3,8 | 4,7 |
| résistance initiale au cisaillement | $\begin{gathered} \mathrm{f}_{\mathrm{vk0}} \\ (\mathrm{MPa}) \end{gathered}$ | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 |
| coefficient partiel de sécurité sur la résistance de la maçonnerie | Yм | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 |
| module d'élasticité de la maçonnerie | E (MPa) | 2800 | 3100 | 3900 | 5800 | 4100 | 3800 | 4700 |

- Valeurs thermiques

| Brique | $\begin{gathered} \lambda_{\text {utile }} \\ {[\mathrm{W} /(\mathrm{m} \cdot \mathrm{~K})]} \\ \text { (Terre cuite) } \end{gathered}$ | Joint horizontal : Joint mince de mortier colle Joint vertical non rempli |  | Joint horizontal : Joint mince de mortier colle <br> Joint vertical : Joint mince de mortier colle |  | ```Joint horizontal : Joint mince de mortier colle Joint vertical : Joint de mortier épais rempli``` |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\underset{\left[W /\left(m^{2} . K\right)\right]}{U}$ | $\mathrm{R}\left[\mathrm{m}^{2} . \mathrm{K} / \mathrm{W}\right]$ | $\underset{\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]}{\mathrm{U}}$ | $\mathrm{R}\left[\mathrm{m}^{2} . \mathrm{K} / \mathrm{W}\right]$ | $\begin{gathered} \mathrm{U} \\ {\left[\mathrm{~W} /\left(\mathrm{m}^{2} . \mathrm{K}\right)\right]} \end{gathered}$ | $\mathrm{R}\left[\mathrm{m}^{2} . \mathrm{K} / \mathrm{W}\right]$ |
| $\begin{aligned} & \text { BGV PV (40 } \\ & \text { alvéoles) } \end{aligned}$ | 0.48 | 0.98 | 0.85 | 0.99 | 0.84 | 1.05 | 0.78 |
| BGV 3+ | 0.48 | 0.78 | 1.12 | 0.78 | 1.11 | 0.86 | 1.00 |
| BGV 4G | 0.48 | 0.63 | 1.41 | 0.64 | 1.40 | 0.72 | 1.22 |
| BGV PV 15 | 0.53 (Non certifié) | 1.27** | 0.63* | 1.27** | 0.63* | Non transmis | Non transmis |
| Urbanbric | 0.53 | 0.76 | 1.14 | 0.77 | 1.14 | 0.84 | 1.02 |
| BGV S25 | 0.53 | 0.54 | 1.68 | 0.54 | 1.67 | 0.62 | 1.45 |
| BGV RT1.2 | 0.48 | 0.73 | 1.20 | 0.73 | 1.20 | Non transmis | Non transmis |

*Valeur minorée de 15\% en l'absence de certification NF Th
**Valeur majorée de $15 \%$ en l'absence de certification NF Th

## Dossier Technique <br> établi par le demandeur

## A. Description

## 1. Principe du procédé

Le procédé BLS BioBric -BGV et Urbanbric est un système de maçonnerie en briques et accessoires de terre cuite assemblés par des joints horizontaux obtenus avec un mortier à joint mince. Les joints verticaux entre produits comportent un emboîtement et peuvent se bâtir à sec, par collage au mortier à joint mince des boutisses entre elles ou par remplissage au mortier.

## 2. Domaine d'emploi

Ce procédé est destiné à la réalisation de murs porteurs ou non porteurs, à enduire, pour tous types de constructions courantes telles que maisons individuelles ou collectifs, et tous types de bâtiments à usage commercial, agricole, scolaire, médical, industriel ou autres, pour tout type de mur selon le DTU 20.1.
Le procédé peut être utilisé dans les zones soumises à la réglementation sismique dans les conditions définies par le présent document.

## 3. Eléments constitutifs du procédé

### 3.1 Briques

Les briques sont à alvéoles verticales dont les faces de pose supérieure et inférieure sont rectifiées, en correspondance avec les cloisons et parois verticales porteuses des divers accessoires.

|  | BGV <br> PV <br> 15 | BGV <br> PV | BGV <br> $3+$ | BGV <br> RT <br> 1.2 | BGV <br> $4 G$ | Urban <br> Bric | BGV <br> S25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Longueur (mm) | 500 | 560 | 560 | 560 | 560 | 560 | 500 |
| Epaisseur (mm) | 150 | 200 | 200 | 200 | 200 | 200 | 250 |
| Hauteur rectifiée <br> (mm) | 274 | 274 | 274 | 274 | 274 | 274 | 274 |
| Classe support <br> d'arrachement | Rt3 | Rt3 | Rt3 | Rt3 | Rt2 | Rt3 | Rt3 |

### 3.2 Briques accessoires

Voir figures en fin de Dossier Technique.

| DESIGNATION |  |  |  |
| :---: | :---: | :---: | :---: |
| Calepinage PV 15 | 500 | 150 | 219 |
| Poteau PV 15 | 500 | 150 | 274 |
| Poteau de calepinage PV 15 | 500 | 150 | 219 |
| Linteau PV 15 | 500 | 150 | 219 |
| Calepinage PV/3+/RT1.2/4G | 560 | 200 | $\begin{aligned} & 219 \\ & 107 \end{aligned}$ |
| Calepinage UrbanBric | 560 | 200 | $\begin{aligned} & 219 \\ & 107 \end{aligned}$ |
| Poteau | 500 | 200 | 274 |
| Poteau sismique | 560 | 200 | 274 |
| Poteau de calepinage | 500 | 200 | 219 |
| Poteau sismique de calepinage | 500 | 200 | $\begin{aligned} & 219 \\ & 107 \end{aligned}$ |
| Poteau multi-angle | 560 | 200 | 274 |
| Poteau multi-angle de calepinage | 560 | 200 | 219 |
| Tableau | 500 | 200 | 274 |
| Linteau de chainage | 560 | 200 | 219 |
| Linteau d'ouverture JT | 500 | 200 | 270 |
| Linteau sismique | 560 | 200 | $\begin{aligned} & 219 \\ & 274 \end{aligned}$ |
| Calepinage S25 | 500 | 250 | $\begin{aligned} & 219 \\ & 107 \end{aligned}$ |
| Linteau S25 | 500 | 250 | $\begin{aligned} & 274 \\ & 219 \end{aligned}$ |
| Poteau S25 | 500 | 250 | 274 |
| Poteau de calepinage 525 | 500 | 250 | $\begin{aligned} & 219 \\ & 107 \end{aligned}$ |
| Planelle 2A | 400 | 50 | $\begin{aligned} & 160 \\ & 200 \\ & 250 \end{aligned}$ |
| Planelles Rmax 1.0 (DTA 16/13-668) | 1200 | 55 | $\begin{aligned} & 170 \\ & 200 \\ & 250 \end{aligned}$ |
| Planelles Rmax 0.5 (DTA 16/13-668) | 400 | 50 | $\begin{aligned} & 170 \\ & 200 \\ & 250 \end{aligned}$ |
| Equerre d'about de plancher | 400 | 200 |  |

### 3.3 Mortier joint mince bio'bric

Le mortier joint mince bio'bric se présente sous forme de poudre rouge, prête à mouiller, en sac de 25 kg .
Sur les sacs d'emballage sont indiqués, outre la référence commerciale «Mortier Joint Mince bio'bric », l'indication codée de l'usine productrice et les caractéristiques et précautions d'emploi.
La fabrication du mortier joint mince fait l'objet d'un autocontrôle par l'usine productrice.
Ce mortier joint mince a fait l'objet d'essais de convenance sur son aptitude à l'emploi pour ce qui concerne la résistance mécanique de la maçonnerie et les conditions de mise en œuvre.
Ses principales caractéristiques sont les suivantes:

| Fournisseur | PAREX LANKO |
| :---: | :---: |
| Nom commercial | Mortier Joint Mince <br> bio'bric |
| Présentation | Poudre rouge |
| Masse volumique apparente en $\mathrm{t} / \mathrm{m}^{3}$ | $1,20 \pm 0,20$ |
| pH | 12.0 |
| Granulométrie | $<1 \mathrm{~mm}$ |
| Taux de gâchage | 32 à $38 \%$ |
| Taux de rétention d'eau | $>91 \%$ |
| Résistance en compression (classe en |  |
| MPa) | $\geq \mathrm{M} 10$ |
| Temps ouvert | 5 à 20 mn |


| Fournisseur | PRB |
| :---: | :---: |
| Nom commercial | Mortier Joint Mince <br> bio'bric |
| Présentation | Poudre rouge |
| Masse volumique apparente en t/m3 | $1,25 \pm 0,1$ |
| pH | $12.5 \pm 0,5$ |
| Granulométrie | $<1 \mathrm{~mm}$ |
| Taux de gâchage | 28 à $32 \%$ |
| Taux de rétention d'eau | $>93 \%$ |
| Résistance en compression (classe en |  |
| MPa) | $\geq \mathrm{M} 10$ |
| Temps ouvert | 5 à 20 mn |

### 3.4 Outillage

Les platines de réglage du niveau de l'arase pour le premier rang ainsi que les rouleaux applicateurs du mortier joint mince sont également fournis en même temps que les briques par Bouyer Leroux Structure.

## 4. Fabrication et contrôles

### 4.1 Schéma général de la production

Les briques et accessoires de la gamme BLS blo'bric BGV et Urbanbric sont fabriqués sur les sites BLS de Gironde (33), Colomiers (31), Saint Marcellin (42) et Mably (42).

La fabrication est réalisée en usine, suivant le principe des produits de terre cuite extrudés.

Après cuisson et avant palettisation, chaque produit passe dans une rectifieuse à meules, permettant le calibrage de la hauteur de pose des briques avec une tolérance de $\pm 0,5 \mathrm{~mm}$.

### 4.2 Contrôles

Les fabrications des briques font l'objet d'un autocontrôle suivi par le CTMNC et l'AFNOR dans le cadre de la procédure des certificats NF.

### 4.21 Briques

Les contrôles sont ceux effectués conformément aux exigences :

- du règlement d'application du Marquage CE 2+,
- du référentiel particulier de la marque NF Brique de terre cuite.

La classe de tolérance dimensionnelle des briques est celle de la catégorie M (tolérance de $\pm 0,5 \mathrm{~mm}$ selon la hauteur).
Les contrôles des performances thermiques sont ceux effectués conformément aux exigences du référentiel particulier de la Marque NF thermique briques de terre cuite.

### 4.22 Mortier joint mince bio'bric

Les contrôles sont effectués conformément aux exigences du règlement d'application du marquage CE2+ et sont tenus par les fabricants à disposition de Bouyer Leroux Structure.

### 4.3 Marquage

Le marquage minimal est :

- Repérage du fabricant.
- Repérage de l'usine de production.
- Date et équipe de fabrication.
- Marquage NF et CE.
- Classe de résistance à la compression.


## 5. Mise en œuvre

### 5.1 Outillage

Outre l'outillage traditionnel du maçon, la mise en œuvre du procédé nécessite I'utilisation de l'outillage complémentaire suivant:

- Des platines de pose ou tout autre dispositif permettant un réglage horizontal précis de l'arase de départ.
- Un mélangeur rotatif pour le gâchage du mortier joint mince (malaxage 3 mn minimum).
- Un rouleau applicateur pour la pose précise et régulière du mortier joint mince sur les éléments briques. Cet outillage présente sur son flanc une patte de guidage pour aider le positionnement par rapport au mur.


### 5.2 Pose du premier rang

Il s'effectue sur l'arase de départ encore fraiche, en mortier traditionnel, avec un réglage précis d'horizontalité et d'alignement.

### 5.3 Pose des rangs suivants

Les rangs suivants sont posés au mortier joint mince après la dépose de celui-ci avec le rouleau applicateur.

### 5.4 Réalisation des points singuliers

### 5.41 Chaînages verticaux

Les briques poteaux sont disposées alternativement dans un sens et dans l'autre pour permettre le harpage avec les briques. Leurs reservations ainsi superposées permettent la mise en œuvre des chaînages verticaux conformément au DTU 20.1 ou conformément aux dispositions applicables dans les zones sismiques 2,3 et 4.

### 5.42 Chaînages horizontaux

Au niveau des planchers lourds, les chaînages sont coffrés côté extérieur par des planelles d'about de plancher en terre cuite de 5 ou 5,5 cm d'épaisseur, et de hauteur correspondant à l'épaisseur des planchers désirés. Ces planelles peuvent être montées au mortier joint mince ou au mortier traditionnel dans le cas d'un soubassement.
Lorsque le plancher supérieur du dernier niveau est léger, le chaînage est réalisé dans la réservation des briques linteaux.

### 5.43 Tableaux de baies

Les briques tableaux sont utilisées, soit entières, soit coupées, de façon à respecter les harpages, dans ce cas les tableaux sont prêts à enduire. Si la brique mère est utilisée, disposer l'emboîtement femelle de la brique en tableau. Cet emboîtement sera rempli au mortier.
Selon la zone sismique, la brique tableau pourra être remplacée par le poteau sismique (voir figure 27).

### 5.44 Linteaux

Les chaînages des linteaux sont réalisés à l'aide des briques linteaux présentant les réservations nécessaires, selon la zone sismique.

### 5.45 Coffres de volets roulants

L'installation de coffres de volets roulants ne diffère pas de celle en maçonnerie traditionnelle. En zone de sismicité 3 ou 4, les coffres doivent être associés au poteau sismique, comme décrit figure 29.

### 5.5 Dispositions parasismiques

La gamme BLS bio'bric BGV et Urbanbric peut être utilisée en zone sismique. L'ensemble des joints verticaux est exécuté soit en collant au joint mince entre elles les boutisses des éléments juxtaposés, soit par pose à sec, conformément aux règles NF-EN-1996.
Exécution des joints verticaux par encollage des boutisses :
La dépose du mortier des joints minces verticaux peut être réalisée à l'aide du rouleau applicateur ou à l'aide d'un outil traditionnel, truelle ou couteau. Le mortier joint mince doit être appliqué sur au moins $40 \%$ de la surface d'une des deux briques à jointer, et l'épaisseur déposée ne doit pas être inférieure à 3 mm . Selon la position de l'emboîtement femelle et l'outillage utilisé, on adaptera le phasage de mise en œuvre (soit enduction du produit en place et approche du produit suivant, soit enduction du produit suivant et approche contre le produit en place).
Les accessoires nécessaires pour répondre aux exigences parasismiques disposent de réservations dont les dimensions transversales sont au moins égales à 150 mm .

## 6. Enduits

### 6.1 Enduits et revêtements extérieurs

Les enduits associés à ces maçonneries sont des enduits traditionnels monocouches ou multicouches applicables sur des supports, au sens du DTU 26.1, de type Rt2 (BGV 4G) ou Rt3 (autres modèles).

Il est néanmoins recommandé d'appliquer des enduits de type OC2.
Dans le cas d'un revêtement extérieur en bardage, les prescriptions sont celles du DTU et cahier technique applicables, ainsi que celles du DTA éventuel de ce procédé.

### 6.2 Enduits intérieurs

Lorsqu'il existe une prescription d'enduit intérieur, ce dernier peut être :

- Ceux prévus pour l'extérieur
- Un enduit plâtre ou plâtre allégé
- Un enduit mince de protection avant doublage
- Une plaque de plâtre

Liste des plâtres allégés référencés :
Chez Placoplâtre :
Lutèce 2000
Lutèce projection $33 \mathrm{X}+$
Lutèce projection 33X
Lutèce projection 2 X
Lutèce projection THD
Lutèce décoplâtre
Aéroblue
Chez Lafarge :
Delta court
Delta long
PPM1
PPM4
PPM44
PPM gold
R'filter

## 7. Assistance technique

BioBric fournit une assistance technique à chaque démarrage des premiers chantiers pour les entreprises découvrant le procédé.

## B. Résultats expérimentaux

## 1. Essais mécaniques

### 1.1 Sur briques

1.11 Essais de compression verticale

| Produits | Essai de compression sur briques <br> RC | Résultat moyen <br> MPa |
| :---: | :---: | :---: |
| BGV PV15 | CTMNC 120268 13/04/2012 | 9,9 |
| BGV PV (40 <br> alvéoles) | CTTB | 8,75 |
| BGV 3+ | CTMNC 130770 24/07/2013 | 7,3 |
| BGV RT 1.2 | CTMNC 131120 04/12/2013 | 8,3 |
| BGV 4G | CTMNC 1404971/2 24/07/2014 | 7.9 |
| Urbanbric | CTMNC 11086 19/01/2011 | 10,8 |
| BGV S25 | CTMNC 11400 27/05/2011 | 9,2 |

1.12 Essais de compression horizontale

| Produits | Essai de compression sur briques <br> Rc H | Résultat moyen <br> MPa |
| :---: | :---: | :---: |
| BGV PV15 | CTMNC 130767 25/07/2013 | 5,0 |
| BGV PV (40 <br> alvéoles) | CTMNC 120368 24/05/2012 | 4,0 |
| BGV 3+ | CTMNC 120162-1 01/08/2011 | 4,2 |

### 1.2 Sur murets

Essals coordonnés avec les essais sur brique du paragraphe 8.12

| Produits | Essai de compression sur murets | Résultat moyen <br> MPa |
| :---: | :---: | :---: |
| BGV PV15 | CTMNC 2014012851 21/05/2012 | 5,47 |
| BGV PV (40 <br> alvéoles) | CEBTP | 3.40 |
| BGV 3+ | CTMNC 2014013948 12/09/2013 | 3,66 |
| BGV RT 1.2 | CTMNC 2014013012 04/02/2014 | 4,54 |
| BGV 4G | CTMNC 1404971/2 24/07/2014 | 4.68 |
| Urbanbric | CTMNC 2014010709 13/01/2011 | 7,01 |
| BGV S25 | CTMNC 2014011726 23/05/2011 | 4,91 |

### 1.3 Sur mortier joint mince

Rapport d'essai du CTMNC daté du 18/09/2014: Evaluation de la compatibilité du mortier PRB avec les briques BGV PV15
Rapport d'essai du CSTB NºEEM 12 26038174/B: Mortier PRB et brique Urbanbric
PV d'essai du CTMNC daté du 2 octobre 2014 : Evaluation de la compatibilité du mortier-colle Bio'Bric Parex avec les briques BGV PV15 et BGV3+ de Bouyer Leroux Structure

### 1.4 Sur murs de contreventement

Rapport d'essai du CSTB no EEM 0626000731
Les principaux résultats sont donnés dans le tableau ci-dessous :

| Brique BGV PV <br> (40 alvéoles) : | Joints verticaux <br> collés | Joints verticaux secs |
| :---: | :---: | :---: |
| Charge élastique (kN) | 252 | 233 |
| Charge maximale (kN) | 315 | 243 |
| Type fissuration | joint horizontal | en escalier |

## 2. Essais acoustiques

Mur en maçonnerie BGV PV (40 alvéoles) revêtu d'un enduit monocouche de 10 mm sur une face.

Rapport d'essai du CSTB AC06-009.

- Mur laissé nu côté intérieur
- Rw (C;Ctr) $=39(-1,-3) d B$
- Mur avec complexe isolant Pregystyrène Th38 80+10
- Rw ( $\mathrm{C} ; \mathrm{Ctr}$ ) $=45(-2,-6) \mathrm{dB}$
- Mur avec complexe isolant Labelrock $80+10$
- Rw ( $\mathrm{C} ; \mathrm{Ctr}$ ) $=55(-3,-10) \mathrm{dB}$

Mur en maçonnerie BGV 3+ revêtu d'un enduit monocouche de 10 mm sur une face.
Rapport d'essai du CSTB AC07-26006037 + ext 07/1

- Mur laissé nu côté intérieur
$\mathrm{Rw}(\mathrm{C} ; \mathrm{Ctr})=39(0 ;-3) \mathrm{dB}$
- Mur avec complexe isolant Labelrock $80+10$

Rw (C;Ctr) $=53(-3 ;-9) \mathrm{dB}$

- Mur avec complexe isolant Pregystyrène Th38 80+10
$\mathrm{Rw}(\mathrm{C} ; \mathrm{Ctr})=44(-2 ;-6) \mathrm{dB}$

Mur en maçonnerie BGV RT 1.2 revêtu d'un enduit plâtre de 15 mm sur une face.
Rapport d'essai du CSTB AC14-26049883

- Mur laissé nu côté intérieur
$\mathrm{Rw}(\mathrm{C} ; \mathrm{Ctr})=36(0 ;-2) \mathrm{dB}$
- Mur avec complexe isolant Labelrock Bidensité $100+10$
$\mathrm{Rw}(\mathrm{C} ; \mathrm{Ctr})=54(-2 ;-7) \mathrm{dB}$
- Mur avec complexe isolant Polyplac Phonik D $100+13$

Rw (C;Ctr) $=54(-1 ;-7) d B$

[^0]Rw (C;Ctr) $=39(-1 ;-2) d B$

- Mur avec complexe isolant Calibel 100+10

Rw (C;Ctr) $=57(-3 ;-9) d B$

- Mur avec complexe isolant XTherm ULTRA 32 100+10

Rw (C;Ctr)=47 (-2;-6) dB

Mur en maçonnerle UrbanBric revêtu d'un enduit monocouche de 15 mm sur une face
Rapport d'essal du AC10-26030599 + ext 11/1

- Mur lalssé nu côté Intérieur

Rw ( $\mathrm{C} ; \mathrm{Ctr}$ ) $=38(-1 ;-2) \mathrm{dB}$

- Mur avec complexe isolant Labelrock 80 ou $100+10$

Rw ( $\mathrm{C} ; \mathrm{Ctr}$ ) $=54(-1 ;-6) \mathrm{dB}$

- Mur avec complexe isolant XTherm ULTRA 32 Phonik 80 ou $100+13$

Rw (C;Ctr) $=54(-3 ;-8) d B$

Mur en maçonnerie BGV S25 revêtu d'un enduit monocouche de 15
mm sur une face
Rapport d'essai du AC10-26030599 + ext 11/1

- Mur laissé nu côté intérieur

Rw (C;Ctr) $=40(-1 ;-2) \mathrm{dB}$

- Mur avec complexe isolant Labelrock 80 ou $100+10$

Rw ( $\mathrm{C} ; \mathrm{Ctr}$ ) $=55(-2 ;-7) \mathrm{dB}$

- Mur avec complexe isolant XTherm ULTRA 32 Phonik 80 ou $100+13$

Rw (C;Ctr) $=55(-2 ;-8) d B$

Tableaux et figures du Dossier Technique

| Laboratoire | $\mathrm{N}^{\circ} \mathrm{PV}$ | $\mathrm{N}^{\circ} \mathrm{Ext}$ | Date de validité | Brique | RC | Isolant | Cloison | Enduit | Charge ( $\mathrm{kN} / \mathrm{ml}$ ) | REI | Hauteur max (m) | Commentaires |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Efectis | $\begin{gathered} \hline 12-\mathrm{A}- \\ 114 \end{gathered}$ |  | 17/02/2017 | $\text { BGV PV } 40$ alvéoles | RC70 | Labelrock 80 mini | BA 13 |  | 110 | 30 | 3 |  |
| Efectis | $\begin{gathered} 12-A- \\ 054 \end{gathered}$ |  | 09/02/2017 | BGV 3+ | RC70 | SIS REVE 30 mini | BA 13 |  | 100 | 30 | 3 |  |
|  |  |  |  |  |  | SIS REVE SI 40 mini |  |  | 80 | 45 |  | avec poteau béton* |
|  |  |  |  |  |  | SIS REVE 30 mini |  |  | 100 | 30 |  |  |
|  |  |  |  |  |  | SIS REVE SI 40 mini |  |  | 80 | 45 |  | avec poteau béton* |
| Efectis | $\begin{gathered} 12-\mathrm{A}- \\ 112 \end{gathered}$ |  | 17/02/2017 | BGV 3+ | RC70 | Labelrock 80 mini | $\text { BA } 10$ mini |  | 11 | 30 | 3 |  |
| Efectis | $\underset{233}{\substack{12-U-\\ \hline}}$ |  | 29/03/2017 | BGV 3+ | RC70 | XTherm Ultra 32100 mini | BA 13 |  | 85 | 30 | 3 |  |
|  |  | 12/1 |  |  |  | Pregystyrene TH32 ou TH38 100 mini |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  |  |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  | Polyplac TH38 100 mini |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  | Doublissimo TH30 ou TH32 100 mini |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  | Placomur TH32 ou TH38 100 mini |  |  |  |  |  |  |
|  |  | 13/2 |  |  |  | Contre cloison sur ossature |  |  |  |  |  |  |
| Efectis | $\begin{aligned} & 13-\mathrm{U}- \\ & 1016 \end{aligned}$ |  | 10/12/2018 | BGV RT 1.2 | RC70 | XTherm Ulitra 30100 | BA 13 |  | 80 | 30 | 2,8 |  |
|  |  | 12/4 |  |  |  | Labelrock 80 mini | $\begin{gathered} \hline \text { BA } 10 \\ \text { mini } \\ \hline \end{gathered}$ |  | 110 |  |  |  |
| Efectis | $\begin{gathered} \hline 12-\mathrm{A}- \\ 113 \\ \hline \end{gathered}$ |  | 17/02/2017 | BGV 4G | RC70 | Labelrock 80 mini | $\begin{gathered} \text { BA } 10 \\ \text { mini } \\ \hline \end{gathered}$ |  | 110 | 30 | 3 |  |
| Efectis | $\begin{gathered} 12-\mathrm{U}- \\ 205 \end{gathered}$ |  | 26/03/2017 | BGV 4G | RC70 | XTherm Ultra <br> mini <br>  | BA 13 |  | 85 | 30 | 3 |  |
|  |  | 12/1 |  |  |  | Pregystyrene TH32 ou TH38 100 mini |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  | XTherm Ultra 30100 mini |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  | Polyplac TH38 100 mini |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  | Doublissimo TH30 ou TH32 100 mini |  |  |  |  |  |  |
|  |  | 12/1 |  |  |  | Placomur TH32 ou TH38 100 mini |  |  |  |  |  |  |
|  |  | 13/2 |  |  |  | Contre cloison sur ossature |  |  |  |  |  |  |
| Efectis | $\begin{gathered} 10-\mathrm{U}- \\ 677 \\ \hline \end{gathered}$ |  | 03/01/2016 | UrbanBric | RC90 | Labelrock 80 mini | $\begin{gathered} \hline \text { BA } 10 \\ \text { mini } \\ \hline \end{gathered}$ |  | 190 | 90 | 2,77 |  |
| Efectis | $\begin{gathered} 11-A- \\ 521 \end{gathered}$ |  | 03/10/2016 | UrbanBric | RC90 | Labelrock 80 mini | $\begin{gathered} \text { BA } 10 \\ \text { mini } \end{gathered}$ |  | 225 | 60 | 3 |  |
|  |  |  |  |  |  | Polyplac TH38 80 mini |  |  |  |  |  |  |
| Efectis | $\begin{aligned} & \text { 11-A- } \\ & 748 \end{aligned}$ |  | 04/01/2017 | UrbanBric | RC90 | XTherm Uitra 3280 mini | BA 13 |  | 100 | 30 | 2,77 |  |
| Efectis | $\begin{gathered} \text { 11-U- } \\ 166 \end{gathered}$ |  | 15/03/2016 | UrbanBric | RC90 | $\begin{gathered} \hline \text { Pregystyrene TH32 } 80 \\ \text { mini } \end{gathered}$ | BA 13 |  | 120 | 30 | 2,77 |  |
|  |  | 11/1 |  |  |  | $\begin{gathered} \hline \text { Pregystyrene TH32 } 80 \\ \text { minj } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { BA } 10 \\ \text { mini } \\ \hline \end{gathered}$ |  |  |  |  |  |
|  |  | 13/2 |  |  |  | Contre cloison sur ossature | BA 13 |  |  |  |  |  |
| CSTB | $\begin{gathered} \text { RS11 } \\ 026 \end{gathered}$ |  | 02/05/2016 | UrbanBric | RC90 | Pregystyrene TH32 100 mini | BA 13 |  | 140 | 30 | 3 |  |
|  |  | 11/1 |  |  |  | $\begin{gathered} \text { Pregystyrene TH32 } 80 \\ \text { mini } \end{gathered}$ |  |  |  |  |  |  |
|  |  | 12/2 |  |  |  | $\begin{gathered} \text { Doublissimo } 30110 \\ \text { mini } \end{gathered}$ |  |  |  |  |  |  |
|  |  | 12/3 |  |  |  | $\underset{\text { Polyplac TH38 }}{\text { mini }} 100$ |  |  |  |  |  |  |
|  |  | 12/3 |  |  |  | XTherm Ultra 32100 |  |  |  |  |  |  |
|  |  | 12/4 |  |  |  | Pregymax 29.5 et 32100 mini |  |  |  |  |  |  |
| Efectis | $\begin{gathered} \text { 12-A- } \\ 054 \end{gathered}$ |  | 09/02/2017 | UrbanBric | RC90 | SIS REVE 30 mini | BA 13 |  | 140 | 30 | 2,77 |  |
|  |  |  |  |  |  | SIS REVE SI 40 mini |  |  |  |  |  |  |
| Efectis | $\begin{gathered} \hline 11-A- \\ 521 \\ \hline \end{gathered}$ |  | 03/10/2016 | BGV S25 | RC90 | Labelrock 80 mini | $\begin{gathered} \text { BA 10 } \\ \text { mini } \\ \hline \end{gathered}$ |  | 231 | 60 | 3 |  |
| Efectis | $\begin{gathered} 11-\mathrm{U}- \\ 184 \end{gathered}$ |  | 19/03/2016 | BGV S25 | RC90 | Labelrock 80 mini | $\begin{gathered} \hline \text { BA } 10 \\ \text { mini } \\ \hline \end{gathered}$ |  | 200 | 180 | 3 |  |
| Efectis | $\begin{gathered} \text { 11-U- } \\ 298 \end{gathered}$ |  | 12/05/2016 | BGV S25 | RC90 | $\begin{gathered} \hline \text { Pregystyrene TH32 } 80 \\ \text { mini } \\ \hline \end{gathered}$ | BA 13 |  | 150 | 30 | 2,77 |  |
|  |  | 11/1 |  |  |  | $\underset{\substack{\text { Pregystyrene TH32 } \\ \operatorname{mini}}}{ }$ | $\begin{gathered} \text { BA } 10 \\ \text { mini } \end{gathered}$ |  |  |  |  |  |
|  |  | 11/1 |  |  |  | $\begin{gathered} \text { Pregystyrene TH32 } \\ 100 \mathrm{mini} \end{gathered}$ | BA 13 |  |  |  |  |  |
|  |  | 13/2 |  |  |  | Contre cloison sur ossature | BA 13 |  |  |  |  |  |
| Efectis | $\begin{gathered} 12-\mathrm{A}- \\ 054 \end{gathered}$ |  | 09/02/2017 | BGV S25 | RC90 | SIS REVE 30 mini | BA 13 |  | 150 | 30 | 2,77 |  |
|  |  |  |  |  |  | SIS REVE SI 40 mini |  |  |  |  |  |  |

*Poteau: Utilisation d'éléments «poteaux», c'est-à-dire d'éléments composés d'alvéoles de dimensions $125 \times 125 \mathrm{~mm}$ destinés à servir de coffrage à une poteau en béton armé placé à ce niveau sur toute la hauteur du mur; le ferraillage de ce poteau est réalisé par 4 HA 10 avec des cadres HA6 disposés tous les 150 mm avec un enrobage de 18 mm . L'entraxe maximal entre deux poteaux est 3000 mm .
Avertissement: les dispositions de ferraillage peuvent être non habituelles pour les ouvrages visés dans le domaine d'emploi.

ANNEXE 2 : ACOUSTIQUE

| Brique | Enduit | Doublage | Rw ( $\mathrm{C} ; \mathrm{Ctr}$ ) [dB] |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Paroi seule | Paroi+doublage |
| BGV PV 40 alvéoles | Monocouche 10 mm | PREGYSTYRENE Th 38 (10+80) | $39(-1 ;-3)$ | 45(-2;-6) |
|  |  | LABELROCK ( $10+80$ ) |  | 55(-3;-10) |
| BGV PV 3+ | Monocouche 10 mm | PREGYSTYRENE Th $38(10+80)$ |  | 44(-2;-6) |
| BGV PV 3+ | Monocouche 10 mm | LABELROCK DENSTE ( $10+80$ ) | 39(0;-3) | 53(-3;-9) |
| BGV PV 4G | Mortler traditionnel 15 mm | CALIBEL ( $10+100$ ) | $39(-1 ;-2)$ | 57(-3;-9) |
|  |  | Xtherm ULTRA $3210+100$ |  | 47(-2;-6) |
| BGV PV S25 | Enduit extérieur 15mm | Xtherm Ultra Phonik 13+80 | 39(0;-2) | $55(-2,-8)$ |
|  |  | LABELROCK $10+80$ | 40(-1;-2) | 55(-2;-7) |
| Urbanbric | Enduit extérieur 15mm | Xtherm Ultra Phonik 13+80 | 38(-1;-2) | 54(-4;-8) |
|  |  | LABELROCK $10+80$ | 38(-1;-2) | 54(-1;-6) |
| BGV RT 1,2 | Enduit 15mm | LABELROCK BIDENSITE ( $10+100$ ) | 36(-1;-2) | 54(-2;-7) |
|  |  | POLYPLAC Phonik D $13+100 \mathrm{~mm}$ | 36(0;-2) | 54(-1;-7) |

## BRIQUE BGV PV 560×200X274



GGV PV 40 ALVEOLES



Figure 2-BGV $3+$


Figure 3-BGV RT 1.2

BRIQUE BGV 4G 560×200×274


Figure 4-BGV 4G

BRIQUE URBANBRIC
560X200X274


Figure 5-UREANBRIC

BRIQUE BGV S25
500X250X274


Figure 6-BGV $\mathbf{5 2 5}$


Figure 7-BGV PV15

## ACCESSOIRES POUR BGV ET URBANBRIC (ep 200mm)



ACCESSOIRES POUR BGV ET URBANBRIC (ep 200mm)
POTEAUTABLEAU SISMIQUE $560 \times 200 \times 274$


POTEAU 500X200X274


Figure 9-POTEAL

TABLEAU 500×200×274


Figure 10-TABLEAU

## ACCESSOIRES POUR BGV S25 (ep 250 mm )

POTEAU
500×250×274


LINTEAU 500×250X274


Figure 11-ACCESSOIRES BGV S25

## ACCESSOIRES POUR BGV PV 15 (ep 150mm)

UNTEAU
$560 \times 150 \times 219$


POTEAU
$500 \times 150 \times 274$


Figure 12-ACCESSOIRES BGV PV 15

## ABOUT DE PLANCHER

PLANELLES 2A


## ABOUT DE PLANCHER

PLANELLES Rmax D.TA nº 16/13-668 (0.5 at 1.0)


Fiqure 14-PLANELES Rmax

EQUERRE POUR BGV ET URBANBRIC (ep 200)


Fipure 15- EAUERRE

## PLATINE D'ARASE



ROULEAU APPLCATEUR LARGELRS 150200250


Fiqure 20-CuTRLAGES


Fioure 21-ASSEmblage


Figure 22-CHAINAGES VERTICAUX FILANTS


Figure 23- POTEAU D'ANGIE

CHAINAGE VERTICAL D'ANGLE MULTIANGLE (ep 200)


Figure 24-MULTAANGLE


Figure 24.2
CHAINAGES VERTICAUX FILANT et D'ANGLE (ZONE NON SISMIQUE)


Figure 24.3

CHAINAGESVERTICAUX FILANT et D'ANGLE (ZONE SISMIQUE)


FIgure 25-CHANAGE HORIZONTAL


Figure 25.2
CHAINAGES HORIZONTAUX


Figure 26- ABOUT DE PLANCHER


Nota: Dans le cas d'une armature verticale de type 4HA8, les aciers de recouvrements horizontaux seront disposé en « boucle " comme en figure 26.3.

Figure 26.2 ABOUT DE PLANCHER et ANGLE - ZONE NON SISMIQUE


Figure 26.3
ABOUT DE PLANCHER et ANGLE - ZONE SISMIQUE

## TABLEAU



Figure 27-TABLEAU


Figure 29-MONTAGE COFFRE


Figure 30 : coupe verticale plancher intermédiaire


Figure 31 : coupes points singuliers


[^0]:    Mur en maçonnerie BGV 4G revêtu d'un enduit monocouche de 15 mm sur une face
    Rapport d'essai du CSTB AC09-26021958

    - Mur laissé nu côté intérieur

